Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(7)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38612388

ABSTRACT

Styryl dyes are generally poor fluorescent molecules inherited from their flexible molecular structures. However, their emissive properties can be boosted by restricting their molecular motions. A tight confinement into inorganic molecular sieves is a good strategy to yield highly fluorescent hybrid systems. In this work, we compare the confinement effect of two Mg-aluminophosphate zeotypes with distinct pore systems (the AEL framework, a one-dimensional channeled structure with elliptical pores of 6.5 Å × 4.0 Å, and the CHA framework, composed of large cavities of 6.7 Å × 10.0 Å connected by eight-ring narrower windows) for the encapsulation of 4-DASPI styryl dye (trans-4-[4-(Dimethylamino)styryl]-1-methylpyridinium iodide). The resultant hybrid systems display significantly improved photophysical features compared to 4-DASPI in solution as a result of tight confinement in both host inorganic frameworks. Molecular simulations reveal a tighter confinement of 4-DASPI in the elliptical channels of AEL, explaining its excellent photophysical properties. On the other hand, a singular arrangement of 4-DASPI dye is found when confined within the cavity-based CHA framework, where the 4-DASPI molecule spans along two adjacent cavities, with each aromatic ring sitting on these adjacent cavities and the polymethine chain residing within the narrower eight-ring window. However, despite the singularity of this host-guest arrangement, it provides less tight confinement for 4-DASPI than AEL, resulting in a slightly lower quantum yield.


Subject(s)
Nanopores , Coloring Agents , Motion , Upper Extremity
2.
Phys Chem Chem Phys ; 26(2): 1225-1233, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38099816

ABSTRACT

The combination between photoactive molecules and inorganic structures is of great interest for the development of advanced materials in the field of optics. Particularly, zeotypes with extra-large pore size are attractive because they allow the encapsulation of bulky dyes. The microporous aluminophoshate Mg-ITQ-51 (IFO-type structure) represents an ideal candidate because of the synergic combination of two crucial features: the IFO framework itself, which is composed of non-interconnected one-dimensional extra-large elliptical channels with a diameter up to 11 Å able to host bulky guest species, and the particular organic structure-directing agent used for the synthesis (1,8-bis(dimethylamino)naphthalene, DMAN), which efficiently fills the IFO pores, and is itself a photoactive molecule with interesting fluorescence properties in the blue range of the visible spectrum, thus providing a densely-incorporated donor species for FRET processes. Besides, occlusion of DMAN dye in the framework triggers a notable improvement of its fluorescence properties by confinement effect. To extend the action of the material and to mimic processes such as photosynthesis in which FRET is essential, two robust laser dyes with bulky size, rhodamine 123 and Nile Blue, have been encapsulated for the first time in a zeolitic framework, together with DMAN, in a straightforward one-pot synthesis. Thus, photoactive systems with emission in the entire visible range have been achieved due to a partial FRET between organic chromophores protected in a rigid aluminophosphate matrix.

3.
Dalton Trans ; 52(43): 15697-15711, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37791957

ABSTRACT

An organic cation lacking specificity in its structure-directing action offers the possibility, through the screening of other structure-directing parameters, to synthesize a variety of zeolites. In this work we show that the organic structure-directing agent 2-isopropyl-1,3-dimethylimidazolium (2iPr13DMI) can produce up to seven different zeolite phases depending on water concentration, the presence of inorganic impurities, crystallization temperature and time, and germanium molar fraction. The obtained phases are very different in terms of pore system, connectivity of the zeolite structure and structural units. At the pure SiO2 side, ZSM-12 and SSZ-35 dominate, with ZSM-12 being favored by the presence of potassium impurities and by less concentrated conditions. The introduction of Ge at low levels favors SSZ-35 over ZSM-12 and as the Ge fraction increases it successively affords CSV, -CLO and two distinct UOS zeolites, HPM-11 and HPM-6. These two zeolites have the same topology but distinct chemical compositions and display powder X-ray diffraction patterns that are much different from each other and from that of as-synthesized IM-16 (UOS reference material). They also show different symmetry at 96 K. Rietveld refinements of the three as-made UOS materials mentioned are provided. HPM-6 and HPM-11 are produced in distinct, non-adjacent crystallization fields. The frequent cocrystallization of the chiral STW zeolite, however, did not afford its synthesis as a pure phase. Molecular mechanics simulations of the location of the organic cation and host-guest interactions fail to explain the observed trends, but also considering the intrinsic stability of the zeolites and the effect of germanium help to rationalize the results. The study is completed by DFT calculations of the NMR chemical shifts of 13C in UOS (helping to understand splittings in the spectrum) and 19F in CSV (supporting the location of fluoride inside the new [4452], which is an incomplete double 4-ring).

4.
Chem Commun (Camb) ; 58(94): 13083-13086, 2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36349553

ABSTRACT

A surprising inversion of chirality of the -ITV zeolite framework is observed when the ethyl group of the enantiopure N,N-ethyl-methyl-pseudoephedrinium organic structure-directing agent is replaced by a benzyl or 2-methylbenzyl group, keeping the same molecular absolute configuration. Interestingly, chiral zeolite materials obtained with these new benzyl-containing cations reach unprecedentedly high enantiomeric excesses up to 55%.

5.
Chemistry ; 28(42): e202200702, 2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35510690

ABSTRACT

(1S,2S)-N-methyl-pseudoephedrine (MPS) was used as organic structure-directing agent (OSDA) for the synthesis of Mg-doped nanoporous aluminophosphates. This molecule displays a particular conformational behavior, where the presence of H-bond donor and acceptor groups provide a rigid conformational space with one asymmetric conformation preferentially occurring. MPS drives the crystallization of Mg-containing AFI materials. Characterization of these materials shows that the OSDA incorporate as protonated species, arranged as head-to-tail monomers. Combination of three-dimensional electron diffraction with high-resolution synchrotron powder X-ray diffraction allowed to locate both the Mg and the organic species. Interestingly, results showed that the spatial incorporation of Mg is driven by the hydroxyl groups of the organic cation through the development of H-bonds with negatively-charged MgO4 tetrahedra. This work demonstrates that H-bond forming groups can be used to drive the spatial incorporation of low-valent dopants within zeolitic frameworks, a highly desired aim in order to control their catalytic activity and selectivity.


Subject(s)
Zeolites , Catalytic Domain , Crystallization , Zeolites/chemistry
6.
J Am Chem Soc ; 144(18): 8249-8256, 2022 05 11.
Article in English | MEDLINE | ID: mdl-35502872

ABSTRACT

The development of chiral zeolitic catalysts possessing extra-large pores and endowed with the capability of enantioselectively processing bulky products represents one of the greatest challenges in chemistry. Here, we report the discovery of GTM-3, an enantio-enriched extra-large pore chiral zeolite material with -ITV framework structure, obtained using a simple enantiopure organic cation derived from the chiral pool, N,N-ethyl-methyl-pseudoephedrinium, as the chiral-inductor agent. We demonstrate the enantio-enrichment of GTM-3 in one of the two enantiomorphic polymorphs using the two enantiomers of the organic cation. Interestingly, we prove the ability of this zeolitic material to perform enantioselective catalytic operations with very large substrates, here exemplified by the catalytic epoxide aperture of the bulky trans-stilbene oxide with alcohols, yielding unprecedented product enantiomeric excesses up to 30%. Our discovery opens the way for the use of accessible chiral zeolitic materials for the catalytic asymmetric synthesis of chiral pharmaceutical compounds.


Subject(s)
Zeolites , Catalysis , Stereoisomerism
7.
Dalton Trans ; 51(14): 5434-5440, 2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35293917

ABSTRACT

In this work we show the use of high-resolution 1H MAS NMR to distinguish between two kinds of aggregation states of (1R,2S)-ephedrine, a chiral organic structure directing agent, occluded within AFI-type microporous aluminophosphates. We investigate in particular the supramolecular assembly of the molecules through π⋯π type interactions of their aromatic rings when confined within the one-dimensional AFI channels. A series of high-resolution two-dimensional spin diffusion spectra combined with molecular simulations and DFT calculations allowed us to distinguish different aggregation states of ephedrine molecules and precisely estimate the distances between the aromatic rings and their closest protons inside the zeolite channels as a consequence of distinct proton spin diffusion profiles.

8.
Chem Commun (Camb) ; 57(2): 191-194, 2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33295346

ABSTRACT

The new zeolite NUD-3 possesses a three-dimensional system of large pore channels that is topologically identical to those of ITQ-21 and PKU-14. However, the three zeolites have distinctly different frameworks: a particular single 4-membered ring inside the denser portion of the zeolite is missing in PKU-14, disordered in ITQ-21 and fully ordered in NUD-3. We document these differences and use molecular simulations to unravel the mechanism by which a particular structure directing agent dication, 1,1'-(1,2-phenylenebis(methylene))bis(3-methylimidazolium), is able to orient this inner ring.

9.
Dalton Trans ; 49(28): 9618-9631, 2020 Jul 21.
Article in English | MEDLINE | ID: mdl-32584358

ABSTRACT

In this work, we perform an in-depth experimental and computational study about the structure-directing effect of two new chiral organic quaternary ammonium dications bearing two N-methyl-prolinol units linked by a xylene spacer in para or meta relative orientation, displaying four enantiopure stereogenic centers in (S) configuration. Synthesis results show that the para-xylene derivative is an efficient structure-directing agent, promoting the crystallization of ZSM-12 (in pure-silica composition), beta zeolite (as pure-silica, or in the presence of Al or Ge), and a mixture of polymorphs C, A and B of zeolite beta (in the presence of Ge). In contrast, the meta-xylene derivative showed a much poorer structure-directing activity, yielding only amorphous materials unless Ge is present in the gel, where beta and polymorph C (together with A and B) zeolites crystallized. Molecular simulations showed that the para-xylene dication displays a cylindrical shape suitable for confining in zeolite pores, while the meta-xylene derivative has an angular shape that shifts from the typical dimensions required for 12MR zeolite channels. Despite enantio-purity of the para-xylene dication with (S,S,S,S) configuration, no enrichment in polymorph A of the zeolite beta samples obtained was observed by Transmission Electron Microscopy. With the aid of molecular simulations, the failure in transferring chirality to the zeolite is explained by the loose fit of this SDA in the large-pores of zeolite beta, and a lack of close geometrical fit with the chiral element of polymorph A, as evidenced by the very similar interaction of the cation with the two enantiomorphic space groups of polymorph A. Nevertheless, the molecular-level knowledge gained in this work can provide insights for the future design of more efficient SDAs towards the synthesis of chiral zeolites.

10.
Nanomaterials (Basel) ; 10(6)2020 Jun 16.
Article in English | MEDLINE | ID: mdl-32560167

ABSTRACT

By simultaneous occlusion of rationally chosen dyes, emitting in the blue, green and red region of the electromagnetic spectrum, into the one-dimensional channels of a magnesium-aluminophosphate with AEL-zeolitic type structure, MgAPO-11, a solid-state system with efficient white light emission under UV excitation, was achieved. The dyes herein selected-acridine (AC), pyronin Y (PY), and hemicyanine LDS722-ensure overall a good match between their molecular sizes and the MgAPO-11 channel dimensions. The occlusion was carried out via the crystallization inclusion method, in a suitable proportion of the three dyes to render efficient white fluorescence systems by means of fine-tuned FRET (fluorescence resonance energy transfer) energy transfer processes. The FRET processes are thoroughly examined by the analysis of fluorescence decay traces using the femtosecond fluorescence up-conversion technique.

11.
Dalton Trans ; 49(21): 7037-7043, 2020 Jun 07.
Article in English | MEDLINE | ID: mdl-32396596

ABSTRACT

HPM-7, a germanosilicate synthesized using long imidazolium-based dications with two different linkers, is shown to possess the POS topology, although disorder may exist but it is very difficult to discern. First, three simple ordered polymorphs (POS-A to POS-C) with very similar energies and structural motifs could give rise to intergrowths that would be very difficult to recognize by powder X-ray diffraction, according to DIFFaX simulations. Another four structures (POS-D to POS-G) can be derived from POS by changing the orientation of two single four rings within the structure, possibly providing an additional source of disorder. While 3D EDT strongly suggests that HPM-7 basically possesses the POS-A (i.e. POS) topology, a detailed HR-STEM study demonstrates the rare existence of some disorder compatible with the polymorph POS-D. The general avoidance of polymorphs with very similar structural motifs and comparable energies points to a rather specific structure-direction by the organic dications used.

12.
Dalton Trans ; 48(48): 17752-17762, 2019 Dec 28.
Article in English | MEDLINE | ID: mdl-31763644

ABSTRACT

A short imidazolium based dication, with only three methylene units in the spacer linker, selectively directs the crystallization of zeolite HPM-12 (*UOE) as long as there is enough germanium present in the synthesis gel. The integrity of the dication is proved by dissolution of the zeolite and 1H and 13C NMR spectroscopy, where significant effects of organic dication concentration and the presence and concentration of HF need to be taken into account. For the as-made HPM-12 zeolite, a large shift of 9 ppm of one resonance in the 13C MAS NMR spectrum is due to the particular conformation of the dication imposed by confinement in the zeolite framework, as found by DFT calculations. The structure-directing ability of this kind of dication with varying length of the linker suggests that matching of the distance between positive charges (imidazolium moieties) and negative charges (double four rings in which fluoride resides) plays a crucial role during crystallization.

13.
Chemistry ; 25(6): 1561-1572, 2019 Jan 28.
Article in English | MEDLINE | ID: mdl-30468544

ABSTRACT

As the spacer length in 1,2-dimethylimidazolium-based dications increases beyond a specific point (six methylene units), they fail in structure-directing towards STW zeolites in any synthetic conditions. These dications can instead produce, under fluoride concentrated conditions, either *BEA [in the case of the eight-methylene-unit structure-directing agent (SDA)] or MWW (ten methylene units) zeolites. For any length of the dication, the default zeolite (MTW) is a relatively dense zeolite containing a unidimensional channel, whereas the zeolite demanding most specificity (STW, *BEA or MWW) is more porous, affording a larger concentration of the dication to be occluded. This work provides the first reported fluoride synthesis of pure silica MWW zeolites. Charge balance of the organic dications in this zeolite was achieved by combining "structural" silanolates, regular "connectivity defects" and occluded fluoride. Molecular mechanics calculations showed a perfect fit of the decamethylenebis(dimethylimidazolium) dication in the sinusoidal intralayer pore system of MWW. The calculations showed also that the dication is able to stabilize the interlayer space without disturbing the hydrogen-bonding system that holds the layers together in the as-made material. The 19 F magic-angle spinning (MAS) NMR presented two distinct resonances at -71 and -83 ppm, which, on the basis of DFT calculations, we tentatively assigned to fluoride occluded in [46 62 ] and [41 52 62 ] cages of the MWW structure, respectively. The same DFT study determines a different chemical shift of one methyl 13 C nuclear magnetic resonance according to the imidazolium ring residing in the sinusoidal channels or in the large cup cavities, thus explaining an experimentally observed splitting of that resonance.

14.
ACS Photonics ; 5(1): 151-157, 2018 Jan 17.
Article in English | MEDLINE | ID: mdl-30364720

ABSTRACT

A cyanine dye (PIC) was occluded into two 1D-nanopoporus Mg-containing aluminophosphates with different pore size (MgAPO-5 and MgAPO-36 with AFI and ATS zeolitic structure types, with cylindrical channels of 7.3 Å diameter and elliptical channels of 6.7 Å × 7.5 Å, respectively) by crystallization inclusion method. Different J-aggregates are photophysically characterized as a consequence of the different pore size of the MgAPO frameworks, with emission bands at 565 nm and at 610 nm in MgAPO-5 and MgAPO-36, respectively. Computational results indicate a more linear geometry of the J-aggregates inside the nanochannels of the MgAPO-36 sample than those in MgAPO-5, which is as a consequence of the more constrained environment in the former. For the same reason, the fluorescence of the PIC monomers at 550 nm is also activated within the MgAPO-36 channels. Owing to the strategic distribution of the fluorescent PIC species in MgAPO-36 crystals (monomers at one edge and J-aggregates with intriguing emission properties at the other edge) an efficient and one-directional antenna system is obtained. The unidirectional energy transfer process from monomers to J-aggregates is demonstrated by remote excitation experiments along tens of microns of distance.

15.
Dalton Trans ; 47(22): 7498-7504, 2018 Jun 05.
Article in English | MEDLINE | ID: mdl-29786739

ABSTRACT

Length-dependent structure direction of linear methylimidazolium-based dications towards MFI zeolite, previously known only for the tetramethylene spacer, has also been found for octamethylene and decamethylene spacers. This works only under highly concentrated conditions, whereas dilution always tends to favor TON, a default structure that is the only zeolite obtained with the other reported dications (with tri-, penta-, and hexamethylene spacers). The locations and conformations of the dications have been studied by molecular mechanics simulations. As longer dications introduce lower density of positive charges in the zeolite, the density of connectivity defects also decreases. Finally, these long dications cannot easily place each charged imidazolium ring in the two possible orientations (either parallel or perpendicular to 4MR close to F- sites) found for the tetramethylene case. Hence, although the three MFI materials display two 19F NMR resonances at similar chemical shifts, their relative intensities strongly vary as a function of the spacer length.

16.
Phys Chem Chem Phys ; 20(13): 8564-8578, 2018 Mar 28.
Article in English | MEDLINE | ID: mdl-29542753

ABSTRACT

In an attempt to promote the crystallization of chiral inorganic frameworks, we explore the ability of chiral (1R,2S)-ephedrine and its diastereoisomer (1S,2S)-pseudoephedrine to act as organic building blocks for the crystallization of hybrid organo-inorganic aluminophosphate frameworks in the presence of fluoride. These molecules were selected because of their particular molecular asymmetric structure, which enables a rich supramolecular chemistry and a potential chiral recognition phenomenon during crystallization. Up to four new low-dimensional materials have been produced, wherein the organic molecules form an organic bilayer in-between the inorganic networks. We analyze by molecular simulations the trend of these chiral molecules to form these types of framework, which is directly related to their amphiphilic nature that triggers a strong self-assembly through hydrophobic interactions between aromatic rings and hydrophilic interactions with the fluoro-aluminophosphate inorganic units. Such a self-assembly process is strongly dependent on the concentration of the organic molecules.


Subject(s)
Ephedrine/chemistry , Pseudoephedrine/chemistry , Hydrophobic and Hydrophilic Interactions , Phosphates/chemistry
17.
ACS Omega ; 3(10): 13538-13550, 2018 Oct 31.
Article in English | MEDLINE | ID: mdl-31458061

ABSTRACT

The present work introduces new functional bionanocomposite materials based on layered montmorillonite and fibrous sepiolite clays and two biopolymers (carboxymethylcellulose polysaccharide and zein protein) to produce drug-loaded bionanocomposite films for antibiotic topical delivery. Neomycin, an antibiotic indicated for wound infections, was employed as the model drug in this study. The physical properties and the antimicrobial activity of these materials were evaluated as a function of the type of hybrid and the amount of zein protein incorporated in the bionanocomposite films. In addition, the interfacial and physicochemical properties of these new clay-drug hybrids have been studied through a combination of experimental and computational methodologies, where the computational studies confirm the intercalation of neomycin into the montmorillonite layers and the possible penetration of the drug in the tunnels of sepiolite, as pointed out by N2 adsorption and X-ray diffraction techniques. The antimicrobial activity of these bionanocomposite materials show that the films based on montmorillonite-neomycin display a more pronounced inhibitory effect of the bacterial growth than those prepared with the sepiolite-neomycin hybrid. Such effect can be related to the difficult release of neomycin adsorbed on sepiolite due to a strong interaction between both components.

18.
Chemistry ; 22(44): 15700-15711, 2016 Oct 24.
Article in English | MEDLINE | ID: mdl-27629940

ABSTRACT

In this work, hemicyanine dye LDS 722 is encapsulated into the 1D elliptical nanochannels of MgAPO-11 aluminophosphate by a crystallization inclusion method. The synthesis of the hybrid material has been optimized through a systematic variation of the crystallization conditions in order to obtain pure and large crystals (around 20 µm×30 µm) suitable for optical applications. The tight fitting between the molecular size of the guest dye and the pore dimensions of the host has favored a rigid planar conformation of the dye, restricting its inherent flexibility, which is confirmed by molecular simulations. Consequently, the encapsulation of LDS 722 into MgAPO-11 has led to an astonishing enhancement of the fluorescence with respect to the dye into MgAPO-5, with slightly larger cylindrical channels, and with respect to the dye in solution. Moreover, the perfect alignment of LDS 722 (dye with intrinsic nonlinear-optical properties) along the channels of MgAPO-11 has revealed attractive second-order nonlinear properties, such as second harmonic generation, proven through microscopy measurements in single crystals.

19.
Phys Chem Chem Phys ; 17(1): 348-57, 2015 Jan 07.
Article in English | MEDLINE | ID: mdl-25381745

ABSTRACT

A molecular-mechanics computational study is performed in order to analyze the arrangement of (1R,2S)-(-)-ephedrine molecules within the 12-MR channels of the AFI aluminophosphate microporous framework and the influence on the spatial distribution of dopants embedded in the tetrahedral network. Results showed that ephedrine molecules arrange exclusively as dimers by π-π stacking of the aromatic rings within the AFI channels. Interestingly, the asymmetric nature of ephedrine and the presence of H-bond-forming groups (NH2 and OH) involve a preferential orientation where consecutive dimers within the channels are rotated by an angle of +30°; this is driven by the establishment of inter-dimer H-bonds. This preferential orientation leads to the development of a supramolecular enantiomerically-pure helicoidal (chiral) arrangement of ephedrine dimers. In addition, the computational results demonstrate that the particular molecular structure of ephedrine imparts a strong trend to attract negative charges to the vicinity of the NH2(+) positively-charged groups. Hence divalent dopants such as Mg, whose replacement by trivalent Al in the aluminophosphate network involves the generation of a negative charge, will tend to locate close to the NH2(+) molecular groups, suggesting that an imprinting of the organic arrangement to the spatial distribution of dopants would be feasible. Combined with the trend of ephedrine to arrange in a helicoidal fashion, an enantiomerically-pure helicoidal distribution of dopants would be expected, thus inducing a new type of chirality in microporous materials.


Subject(s)
Aluminum Compounds/chemistry , Ephedrine/chemistry , Dimerization , Hydrogen Bonding , Magnesium/chemistry , Models, Molecular , Molecular Structure , Phosphates/chemistry , Porosity , Stereoisomerism
20.
Chemistry ; 19(30): 9859-65, 2013 Jul 22.
Article in English | MEDLINE | ID: mdl-23780893

ABSTRACT

The fluorescing dye Pyronine Y has been incorporated by crystallization inclusion into three different one-dimensional microporous aluminophosphate host materials. A computer-aided rational choice of the framework of the host material made it possible to modulate the aggregation state of the guest dye molecules. Undesirable H-type dimers of Pyronine Y are included within the large channels of the AFI structure, which allow the inclusion of any of the aggregated species of the dye. Density functional theory (DFT) calculations show that H-type aggregate formation is suppressed within the ATS framework. Experimental results indicate that red-emissive J-type aggregates are formed instead, offering a one-directional, organized, multicolour emission system that is interesting for energy transport. Complete suppression of aggregation is achieved by the inclusion of Pyronine Y within the AEL-type structure, due to its particular topology and channel dimensions This results in a highly fluorescent hybrid system with extraordinarily preferential alignment of the chromophores. Here, we report experimental evidence and modelling insights for how the "cage effect" of the nanochannels can tune the optical properties of the hybrid composite material by influencing the aggregation state of the dye.

SELECTION OF CITATIONS
SEARCH DETAIL
...